Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, 0, 0) → s(x)
f(0, y, 0) → s(y)
f(0, 0, z) → s(z)
f(s(0), y, z) → f(0, s(y), s(z))
f(s(x), s(y), 0) → f(x, y, s(0))
f(s(x), 0, s(z)) → f(x, s(0), z)
f(0, s(0), s(0)) → s(s(0))
f(s(x), s(y), s(z)) → f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) → f(0, y, s(0))
f(0, s(0), s(s(z))) → f(0, s(0), z)
f(0, s(s(y)), s(s(z))) → f(0, y, f(0, s(s(y)), s(z)))
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, 0, 0) → s(x)
f(0, y, 0) → s(y)
f(0, 0, z) → s(z)
f(s(0), y, z) → f(0, s(y), s(z))
f(s(x), s(y), 0) → f(x, y, s(0))
f(s(x), 0, s(z)) → f(x, s(0), z)
f(0, s(0), s(0)) → s(s(0))
f(s(x), s(y), s(z)) → f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) → f(0, y, s(0))
f(0, s(0), s(s(z))) → f(0, s(0), z)
f(0, s(s(y)), s(s(z))) → f(0, y, f(0, s(s(y)), s(z)))
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Quasi-Precedence:
[f3, 0] > s1
Status: f3: [1,2,3]
0: multiset
s1: multiset